

Vivekanand Education Society's

College of Arts, Science and Commerce

(Autonomous)

Sindhi Society, Chembur, Mumbai, Maharashtra – 400 071.

Accredited by NAAC "A Grade" in 3rd Cycle - 2017 Best College Award – Urban Area, University of Mumbai (2012-13) Recipient of FIST Grant (DST) and STAR College Grant (DBT)

Affiliated to the

University of Mumbai

Syllabus for

Program: B.Sc. (Physics) Since 1962 (Program code: VESUSPH)

As per Choice Based Credit System (CBCS) with effect from Academic Year 2022 - 2023

Program Outcomes (PO):

Upon completion of B.Sc Programme, the graduates will have:

- PO1 The required analytical skills to apply appropriate scientific principles and methodologies to solve real world problems.
- PO2 The ability to design, carry out experiments and analyze results by accounting uncertainties in different quantities measured using various scientific instruments.
- PO3 The ability to communicate scientific concepts, experimental results and analytical arguments clearly and concisely, both verbally and in writing.
- PO4 Understanding of the need for scientific solutions to problems of the environment and society, keeping in mind their sustainable development.
- PO5 Imbibed ethical, moral and social values in personal and social life leading to a cultured and civilized personality.

Program Specific Outcomes (PSO)

On completion of B.Sc. Physics program, learners will be enriched with knowledge and be able to

- PSO1 Understand applications of physics concepts in different areas.
- PSO2 Establish linkages between different areas of physics and other interdisciplinary science subjects.
- PSO3 Demonstrate competence in problem solving skills in different areas of Physics namely Classical Mechanics, Quantum Mechanics, Modern Physics, Electrodynamics, Optics, Thermodynamics, Crystallography and Materials Science.
- PSO4 Use analytical skills using appropriate physical principles and methodologies to solve a wide range of problems.
- PSO5 Design and carry out experiments by using appropriate scientific instruments.

F.Y.B.Sc. (PHYSICS)

(SEMESTER I)

Course Code	Title	Credits & Lectures per Semester	Lectures per Week
VESUSPH101	Mechanics and Thermodynamics	02	
	Unit I: Newton's laws, Basic fluid dynamics	15 Lectures	
	Unit II: Introduction to thermodynamics	15 Lectures	03
	Unit III: SHM (Composition of parallel and Perpendicular SHM) and waves	15 Lectures	
VESUSPH102	Optics and Material Science	02	
	Unit I: Geometric optics (thin lens) Combination of lenses	15 Lectures	
	Unit II: Laser and Fiber optics, Acoustics	15 Lectures	03
	Unit III: Introduction to Materials Science	15 Lectures	
VESUSPHP101	Practical I	02	06

Since 1962

F.Y.B.Sc. PHYSICS

(SEMESTER II)

Course Code	Title	Credits & Lectures per Semester	Lectures per Week
VESUSPH201	Electricity and Electronics	02	
	Unit I : AC circuits	15 Lectures	
	Unit II: Circuit the <mark>o</mark> rems	15 Lectures	03
	Unit III: Basic ele <mark>c</mark> tronics	15 Lectures	
VESUSPH202	Modern Physics	02	
	Unit I: Introduction to Quantum Physics	15 Lectures	
	Unit II: Nuclear structure and Radioactivity	15 Lectures	03
	Unit III: Interaction of charged particle with matter and Nuclear reactions	15 Lectures	
VESUSPHP201	Practical II	02	06

Since 1962

Detailed Syllabus: Unit wise / Module wise with number of lectures

Course title: Mechanics and Thermodynamics Course code: VESUSPH101

Objective: To understand and develop competence in use of Basic of mechanics and Thermodynamics.

Learning Outcomes (LO):

- LO1 Understand and apply Newton's laws in describing the motion of simple systems.
- LO2 Apply the free body diagrams to analyze the forces on the object.
- LO3 Use the concepts of friction and the concepts of work and energy, fluid mechanics and be able to perform calculations using them.
- LO4 Understand the concepts of oscillations and waves.
- LO5 Demonstrate quantitative problem-solving skills in all the topics covered
- LO6 Analyze resultant of parallel and perpendicular SHMs
- LO7 Understand and apply zeroth law and first of thermodynamics in different situations.
- LO8 Understand and differentiate different processes of Thermodynamics and calculate work done.

Unit	Details of topics	No of
no.		lectures
1	Newton's laws, Basic fluid dynamics	
	1) Newton's first, second and third laws of motion, applications with and	15
	without friction, Inertial and non-inertial frames of reference, pseudo	Lectures
	forces RH 5.1-5.9; HCV 5.5, 6.1-6.4 1962	
	2) Work, work done by the gravitational force, work done by a spring	
	force, work done by a general variable force, kinetic energy, potential energy, conservation of energy, power	
	RH 7.1-7.9, 8.2, 8.7-8.8	
	3) Pascal's Principle, equation of continuity, Bernoulli's equation,	
	applications of Bernoulli's equation, streamline and turbulent flow, lines	
	of flow in airfoil, Poiseuille's equation.	
	RH 14.6, 14.9-14.10	

2	Intro to thermodynamics	15
	1) Behavior of real gases and real gas equation, Van der Waal equation	Lectures
	2)Thermodynamic Systems, Zeroth law of thermodynamics, Concept of	
	Heat, The first law, Non Adiabatic process and Heat as a path function,	
	Internal energy, Heat Capacity and specific heat, Applications of first	
	law to simple processes, general relations from the first law, Indicator	
	diagrams, Work done during isothermal and adiabatic processes.	
	BS : 2.1 - 2.13, 4.1 - 4.14	
3	SHM (composition of parallel and Perpendicular SHM) and Waves	15
	1) Displacement, velocity and acceleration in SHM, Energy of a simple	Lectures
	harmonic oscillator, Simple Harmonic Oscillations in an Electrical	
	System. HJP pp1-12	
	2) Superposition of Collinear Harmonic oscillations: Linearity and	
	Superposition Principle. Superposition of two collinear oscillations	
	having (i) equal frequencies and (ii) different frequencies (Beats). HJP	
	pp12-14	
	3) Superposition of two perpendicular Harmonic Oscillations: Graphical	
	and Analytical Methods. Lissajous Figures with equal an unequal	
	frequency and their uses.	
	HJP pp15, 16, 19	
	4) Transverse waves on string, Travelling and standing waves on a	
	string. Normal modes of a string, Wave equation and its general	
	solution. HJP pp108-112, 124-125	

RH: Fundamental of Physics (extended) by Halliday, Resnick and Walker; John Wiley and Sons.

HCV: Concepts of Physics – (Part–I) by H. C. Verma; Bharati Bhawan Publishers **BS** : Brijlal, Subramanyam and Hemne, Heat Thermodynamics and Statistical Physics, S Chand, Revised, Multi-coloured, 2007 Ed.

HJP: The Physics of Vibrations and Waves by H. J. Pain; John Wiley and Sons.

Additional references:

The Physics of Waves and Oscillations, N.K. Bajaj; Tata McGraw Hill.

Waves: Berkeley Physics Course, vol. 3, Francis Crawford, 2007, Tata McGraw-Hill.

An introduction to mechanics: D. Kleppner, R.J. Kolenkow, McGraw-Hill

Heat and Thermodynamics: M.W. Zemansky, Richard Dittman, McGraw-Hill

Course title: Optics and Material Science Course code: VESUSPH102

Objective: To understand concepts of thin lenses, laser and its application. To develop understanding in classification, selection and applications of materials.

Learning Outcomes (LO):

- LO1 Understand the concept of light refraction through thin lens, Lens combination.
- LO2 understand the basics of Aberrations and how to remove it and its applications.
- LO3 Understand importance of reverberation, acoustics and ways to improve
- LO4 Understand properties of LASER, principle and applications
- LO5 Understand different types optical fibre and its use in communication applications
- LO6 Understand role of materials in different applications and optimized properties required
- LO7 Differentiate uses of materials based on their properties
- LO8 Understand various types and application of conducting, Dielectric, magnetic materials
- LO9 Demonstrate problem solving abilities in topics of the course

Unit	Details of topics	No of
no.		lectures
1	1) Geometrical Optics:	15
	Lens Maker's Formula (Review, exclude derivation), Newton's lens	Lectures
	equation, magnification-lateral, longitudinal and angular. Refraction	
	through lenses, Thin lens, Power, Lens combination.	
	BS: 4.9 to 4.12, 4.15- 4.17 MCC 1962	
	2) Aberrations:	
	Spherical Aberration, Reduction of Spherical Aberration Chromatic	
	Aberration,	
	Condition for Achromatism.	
	BS: 9.1 to 9.5, 9.5.1, 9.6 (exclude 9.6.1) 9.10, 9.11, 9.12, 9.13(1) (2)	
	3) Ramsden and Huygens eyepiece.	
	BS: 10.10, 10.11.	

2	1) Acoustics of buildings: Reverberation, Sabine's formula (without	15
	derivation) Absorption coefficient, Factors affecting acoustics of	Lectures
	buildings, sound distribution in an auditorium RM & KS: 5.9,5.12,	
	5.13, 5.14, 5.15	
	2) Laser: Introduction, Principle of Laser, Properties of Laser, He-Ne	
	Laser, Applications of lasers, Introduction to holography SP: 9.1,9.2,	
	9.3,9.4,9.4.1,9.4.2, 9.4.3, 9.6,9.10	
	3) Fibre optics: Principle of propagation of laser through fibre,	
	Numerical aperture, Step index and graded index fibre Applications of	
	fibre	
	SP: 13.3,13.3.1,13.3.2,1 <mark>3.</mark> 3.3, 13.5,13.9	
3	Materials Science	15
	1) Overview : Classification and Selection of Materials, Semiconducting	Lectures
	materials, Current trends and advances in materials, Smart materials,	
	Nanostructured materials, Quantum dots, Spintronics [KK Chapter 1,	
	Article 3 to 9]	
	2) Electrical properties: Review of Energy band diagram for materials,	
	conductors, semiconduc <mark>to</mark> rs, insulators, correlation between band	
	structure, bonding and electrical conductivity in metals, semiconductors	
	and insulators. Effect of temperature on conductivity. [CMSE 17.1 to	
	17.7]	
	3) Magnetic properties: origin of magnetism in solids, Dimagnetism,	
	paramagnetism, ferromagnetism, anti-ferromagnetism, magnetic	
	hysteresis [CMSE Chapter 18]	
	V.E.S.	
	4) Dielectric properties : Introduction to dielectric, pyroelectric,	
	piezoelectric, ferroelectric materials, qualitative discussion P-E hysteresis	
	[CMSE 17.22 to 17.25] SINCE 1962	

BS : A TextBook of Optics, N. Subramaniyam and Brij Lal, S. Chand and Co. 22nd Ed. (1994)

RM & KS: Properties of matter and Acoustics by R.Murugeshan and K. Sivaprasath, pub. S. Chand & Company Ltd.

SP: Modern Physics Concepts and Applications by S.Puri, Pub. Narosa Publishing House

KK: Materials Science by S.L.Kakani and A.Kakani, First edition, Pub. New Age International (P) Ltd **CMSE:** Callister's Materials Science and Engineering adopted by R. Balasubramaniam, Wiley India

Additional references:

Fundamental of Physics (extended) by Halliday, Resnick and Walker; John Wiley and Sons.Fundamentals of Optics: F.A. Jenkins & H.E. White, McGraw-HillElectronic properties by Rolf HummelMaterials Science and Engineering: A first course by V. Raghavan

Course title: Electricity and Electronics

Course code: VESUSPH201

Objective: To understand working of LR, CR and LCR circuits. To develop competence in use of circuit theorems and develop understanding in digital electronics.

Learning Outcomes (LO):

- LO1 Understand working of LR, CR and LCR circuits
- LO2 Analyze working of AC bridges and use it in different applications
- LO3 Apply different circuit theorem in analysis of electrical circuits
- LO4 Understand diode characteristics and relate it to applications
- LO5 Understand basic digital electronics
- LO6 Demonstrate problem solving abilities in the topics covered in the course
- LO7 Understand Boolean algebra

Unit	Details of topics	No of
no.		lectures
1	1) Alternating current theory:(Concept of L, R, and C: Review)	15
	AC circuit containing pure R, pure L and pure C, Root-Mean- Square,	Lectures
	Average Value over a Half Cycle, representation of sinusoids by	
	complex numbers, Series L-R, C-R and LCR circuits. Resonance in	
	LCR circuit (both series and parallel), Power in ac circuit. Q-factor.	
	CR - 15.2 to 15.11	
	2) AC bridges: AC-bridges: General AC bridge, Maxwell, de-Sauty,	
	Wien Bridge.	
	CR : 15.14 Since 1962	
2	Circuit theorems	15
	1) Ohm's law, Kirchoff's current law, Kirchoff's voltage law	Lectures
	2) Constant Voltage Source, Constant Current Source, Conversion of	
	Voltage Source into Current Source VKM 1.9-1.11	
	3) Thevenin's theorem, Procedure for Finding Thevenin Equivalent	
	Circuit, Norton's theorem, Procedure for Finding Norton Equivalent	
	Circuit, Maximum power transfer theorem VKM 1.12-1.16	
3	1) Diode characteristics (forward bias and reverse bias) VKM: 5.18-	15
	5.19	Lectures

2) DC power supply: Half wave rectifier, full wave rectifier, bridge
rectifier, efficiency, PIV and ripple factor of rectifiers
VKM: 6.6-6.15
3) Digital electronics : logic gates, Demorgan's theorem VKM:
26.10-26.17, 26.20-26.22

CR : Electricity and Magnetism- D. Chattopadhaya and P. C. Rakshit (4th Ed) Reprint – 2000) Books and Allied (P) Ltd.
VKM: Principles of Electronics by V K Mehta and R Mehta; S Chand & Co.

Additional references:

- 1. Foundation of Electricity and Magnetism by Basudev Ghosh; Books & Allied Ltd.
- 2. Electronic principles by Malvino and Bates; McGraw Hill

Course title: Modern Physics Course code: VESUSPH202

Objective: To understand X-ray production, properties and its applications. To develop understanding in foundation of quantum mechanics, nuclear properties, radioactivity and interaction of wave and matter.

Learning Outcomes (LO):

- LO1 Understand nuclear properties and nuclear behavior.
- LO2 Understand the type of isotopes and their applications.
- LO3 Demonstrate and understand the quantum mechanical concepts.
- LO4 Demonstrate quantitative problem-solving skills in all the topics covered.
- LO5 Understand working of gas filled radiation detector
- LO6 Find Q value of equation and solution of Q equations
- LO7 Differentiate various types of nuclear reactions

Details of topics	No of
	lectures
1) X-Rays production and properties. Continuous and characteristic X-	15
Ray spectra, X-Ray Diffraction, Bragg's Law, Applications of X-Rays	Lectures
AB 2.5-2.6	
2) Compton Effect, Pair production and annihilation, Photons and Gravity, Gravitational Red Shift AB 2.7-2.9	
3) Origin of Quantum theory: Black body (definition), Black Body spectrum, Wien's displacement law AB 2.2	
4) Matter waves: de Broglie hypothesis, Davisdon-Germer experiment, GP Thomson experiment, Phase and Group Velocities, Heisenberg uncertainty principle AB 3.1, 3.4, 3.5, 3.7-3.9, R p474-477	
 1) Structure of Nuclei:Basic properties of nuclei, Composition, Charge, Size, Spin, density , Spin and Magnetic moment (Exclude Magnetic Energy, Larmor frequency for protons, Nuclear Magnetic Resonance) , 	15 Lectures
	 X-Rays production and properties. Continuous and characteristic X- Ray spectra, X-Ray Diffraction, Bragg's Law, Applications of X-Rays AB 2.5-2.6 Compton Effect, Pair production and annihilation, Photons and Gravity, Gravitational Red Shift AB 2.7-2.9 Origin of Quantum theory: Black body (definition), Black Body spectrum, Wien's displacement law AB 2.2 Matter waves: de Broglie hypothesis, Davisdon-Germer experiment, GP Thomson experiment, Phase and Group Velocities, Heisenberg uncertainty principle AB 3.1, 3.4, 3.5, 3.7-3.9, R p474-477 Structure of Nuclei:Basic properties of nuclei, Composition, Charge, Size, Spin, density , Spin and Magnetic moment (Exclude Magnetic

	Binding energy, BE/A vs A plot and its interpretation, stability of nuclei	
	(N Vs Z plot), Numerical problems	
	(iv vs Z plot), ivumencal problems	
	AB- 11.1,11.2,11.3,11.4, SBP- 4.1.2	
	2) Radioactivity: Review : Properties of α , β , γ -rays and half-life (AB-	
	12.1), Law of Radioactive decay, mean life (derivation required),	
	statistical nature of radioactivity, units of radioactivity, Radioactive	
	growth and decay (successive disintegration ;A to B to C where C is the	
	stable product) and equilibriums, Natural Radioactive series, Natural and	
	artificial radioactivity, Problems.	
	SBP- 2.3, 2.4, 2.6 ,2.7, 2. <mark>8</mark> , 2.9	
	~,,,,	
	Determination of the age of the Earth, Carbon dating, SBP - 2.12, 2.13	
	Radioisotopes and its Applications : (DCT:2.13 Page No.86 and 87)	
	Additional : https://dae.gov.in/node/191 Radiation hazards	
	(AB:12.1 Page No. 422,423)	
3	1) Interaction between particles and matter : SBP- 1.1.1, 1.1.2	15
		Lectures
	2) Gas filled Radiation Detectors: Plot of variation of ionisation current	
	with applied voltage Nuclear Physics: SNG – Figure: 7.4, Ionization	
	chamber (qualitative), Nuclear Physics : SNG – 7.3(exclude mode of	
	operation), Proportional counter, GM counter, :SBP- 1.I.3 (i, ii),	
	Problems.	
	3) Nuclear Reactions: Introduction, Types of Reactions and Conservation	
	Laws (mass, energy and charge). Concept of Compound and Direct	
	Reaction, Q value equation and solution of the Q equation, Threshold	
	energy from compound nucleus concept, problems. SBP- 3.1, 3.2, 3.3,	
	3.4, 3.5	
	Since 1962	I

- 1. AB: Concepts of Modern Physics by Arthur Beiser; McGraw Hill
- 2. **SBP:** Nuclear Physics An Introduction by S.B.Patel (New Age International Publishers Second Edition)
- 3. SNG: Nuclear Physics by S.N.Ghoshal
- 4. **R:** Atomic Physics by J.B. Rajam; S Chand & Co.

Additional References :

Nuclear and Particle Physics- S.L Kakani and Shubhra Kakani(Viva Books)- 2nd Edition(KK) Nuclear Physics-D.C Tayal (Himalaya Publishing House)(5th Edition)(DCT)

Perspectives of Modern Physics by Arthur Beiser; Tata McGraw Hill

Nuclear Physics by Irving Kaplan, Oxford Publishing

Besides reference books, Standard websites are expected to be referred

Lab courses consists of skill experiments, regular experiments and Demonstration experiments: Skills are conducted in the beginning of VESUSPHP101 and Demonstration experiments are conducted at the end of VESUSPHP201. Students will perform eight regular experiments in addition to Skills/Demonstration experiments.

Course Name : Practical 1

Course code: VESUSPHP101

Objective: To get familiar with use of basic instruments in Physics and develop deep understanding of concepts in different concepts studied in theory

Learning Outcomes (LO):

On successful completion of this course students will be able to:

- LO1 Use instruments such as Vernier calliper, Screw gauge, multimeter confidently.
- LO2 Demonstrate skills of calculating least count of instruments and use it appropriately.
- LO3 Demonstrate careful conduct of Lab experiments.
- LO4 Demonstrate appropriate use of multimeter in measuring various quantities

Skills Experiments:

- 1) Vernier calliper
- 2) Screw gauge
- 3) Use of Multimeter
- 4) Spectrometer
- 5) Travelling microscope
- 6) Scientific calculator
- 7) Graph plotting

Regular Experiments:

- 1) Study of Thermistor characteristics
- 2) Bifilar Pendulum
- 3) Angle of Prism using spectrometer
- 4) Refractive index measurement using spectrometer
- 5) Constant Volume Air Thermometer (CVAT)
- 6) Combination of lenses
- 7) Frequency of AC mains
- 8) Study of Zener characteristics
- 9) Study of NAND and NOR as a basic building blocks
- 10) Verification of Demorgan's theorem
- 11) Verification of basic thermodynamics laws using pressure/temperature sensors
- 12) Study Lissajous figure

Course Name : Practical 2 Course code: VESUSPHP201

Objective: To get familiar with use of basic instruments in Physics and develop deep understanding of concepts in different concepts studied in theory

Learning Outcomes (LO):

On successful completion of this course students will be able to:

- LO1 Demonstrate use of various scientific instruments confidently.
- LO2 Demonstrate skills of calculating least count of instruments and use it appropriately and express results appropriately.
- LO3 Demonstrate careful conduct of Lab experiments.

Regular experiments:

- 1) Study of Flywheel
- 2) Study of Bridge rectifier
- 3) Half wave and Full wave rectifier (study of input and output)
- 4) L-R circuit
- 5) C-R Circuit
- 6) LCR series resonance circuit
- 7) Thevenin's theorem
- 8) Nortorn's theorem
- 9) Maximum power transfer theorem
- 10) Torsional oscillations
- 11) Frank Hertz expt
- 12) Determination of g using position sensors
- 13) Determination of g using simple pendulum

Demonstration Practicals:

1) G-M counter

- 2) Conservation of angular momentum
- 3) Faraday's law
- 4) Laser divergence
- 5) Elastic collisions (Newton's laws)
- 6) Bernouli's theorem
- 7) Optical fiber Kit
- 8) L-figures
- 9) Use of CRO
- 10) Plotting of graph using excel, linear fitting

Modality of assessment

The performance of the learners shall be evaluated into two parts. The learner's performance shall be assessed by Internal Assessment with 25% marks in the first part & by conducting the Semester End Examinations with 75% marks in the second part. Practical Examination will consist of End Sem examination.

Student will have to score 40% of marks in Internal assessment as well as End Sem examination to pass the course.

The allocation of marks for the Internal Assessment and Semester End Examinations are as shown below:-

Internal Assessment: It is defined as the assessment of the learners on the basis of internal evaluation as envisaged in the Credit & Choice based system by way of participation of learners in various academic and correlated activities in the given semester of the programme.

Semester End Assessment : It is defined as the assessment of the learners on the basis of Performance in the semester end Theory/ written/ Practical examination.

A. Theory - Internal assessment 25%

25 marks

Sr No	Evaluation type	Marks
1.	Class Tests (multiple choice type)/ Assignments/Activity /Project/ Seminar presentation/ case study etc.	20
2.	Active participation in routine class activity Overall conduct as a responsible student, with respect to good behaviour, leadership qualities, interpersonal skills etc.	05

Since 1962

B. Theory - External examination - 75%

Semester End Theory Assessment

Duration - Each paper will be of 75 marks and shall be of 2.5 hours duration

There shall be question of 25 marks questions from each unit. There would be one question from each unit with sub questions with internal choices as given below.

Q	Solve any 5 questions out of following eight questions (5 marks	25 marks
	each)	

75 marks

C. Semester End Practical Assessment

100 marks

The evaluation of Practical papers will be on the based on performance of two experiments.

А	Two experiments /Lab activities	40+40 marks
В	Viva	10 marks
С	Journal	10 marks
	Total marks	100 Marks

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Coordinator / In-charge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern

SEMESTER I

Course	Total Marks
VESUSPH101	100
VESUSPH102	100
VESUSPHP101	100

SEMESTER II

C <mark>o</mark> urse	Total <mark>Ma</mark> rks
VES <mark>U</mark> SPH201	10 <mark>0</mark>
VES <mark>U</mark> SPH202	10 <mark>0</mark>
VESUSPHP201	10 <mark>0</mark>

