Con. 2961-12.

(3 Hours)

[Total Marks: 100

- N.B. 1) All questions are compulsory.
 - 2) Figures to the **right** indicate **full** marks.
 - 3) Use of logarithmic table/non programmable calculator is allowed.
- Select the most appropriate choice for the following: 0.1

40

- The primary salt effect is represented by
 - a) $\ln K = \ln K_o + 2.02 Z_A Z_B I$
 - b) $lnK = Z_A Z_B \sqrt{I}$
 - c) $lnK=Z_AZ_BI$
 - d) $\ln K = \ln K_0 + 1.02 Z_A Z_B \sqrt{I}$
- The eigen functions are orthogonal when
 - $a)J\Psi_{n}^{*}\widetilde{\Psi}_{m}d\tau=0$

 - b) $\int \Psi_n^* \Psi_m d\tau = 1$ c) $\int \Psi_n^* \Psi_m d\tau = 2$ d) $\int \Psi_n^* \Psi_m d\tau = 3$
- C) The third law of thermodynamics states that in the limit $T \rightarrow 0$
 - a) $\triangle G = 0 \text{ b}$) $\triangle H = 0 \text{ c}$) $\triangle U = 0 \text{ d}$) $\triangle S = 0$.
- **D)** Reduced phase rule equation for a two components system becomes

a)
$$F = 4 - P$$
 b) $F = 3 - P$ c) $P = F - 3$ d) $P = F - 4$

- E) The Debye-Falkenhagen effect is
 - a) conductance under high potential gradient
 - b) conductance under high resistance
 - c) conductance under high A.C. frequencies
 - d) conductance under high D.C.frequencies
- sp³d hybridisation occurs in PCl₅ but not in PH₅. This could be because
 - a) Cl is more reactive than H
 - b) Cl has 'd' orbitals but H does not
 - c) Cl atom is larger than H atom
 - d) Due to the higher electronegativity of Cl, the 'd' orbital of phosphorous expands

- G) The point groups for the molecules H₃⁺, H₃, H₂O, BeCl₂ respectively, are
 - (a) D_{3h} , $D_{\infty h}$, C_{2v} , $D_{\infty h}$
 - (b) D_{3h} , C_{2v} , C_{2v} , $C_{\infty v}$
 - (c) $C_{\infty h}$, C_{2v} , C_{2v} , D_{3h}
 - (d) $C_{\infty v}$, C_{2v} , C_{2v} , $C_{\infty v}$
- H) The lone pair of electrons becomes an inert pair of electrons in the following order for NH₃, AsH₃, SbH₃, BiH₃
 - a) $NH_3 > AsH_3 > SbH_3 > BiH_3$
 - b) NH₃>BiH₃>SbH₃>AsH₃
 - c) NH₃>SbH₃>BiH₃>AsH₃
 - d) NH₃>BiH₃>AsH₃>SbH₃
- I) In case of Mg²⁺ and Ca²⁺, the former
 - a) is found concentrated in the inside of an animal cell
 - b) is found concentrated in the outside of an animal cell
 - c) is not found in an animal cell
 - d) is found only in plant cells
- J) If a complex is formed in stepwise manner, then for the stepwise stability constants pK_1 and pK_2 , the following stability relation holds
 - a) $pK_1 = pK_2$
 - b) $pK_1 > pK_2$
 - c) $pK_1 < pK_2$
 - d) $pK_1 \ge pK_2$
- **K)** What is the major product expected from the following reaction?

L) What is the λ max for the following compound?

- a) 234 nm b) 244 nm c) 273 nm d) 280 nm
- M) The CMR spectrum of an unknown compound shows 4 absorptions and the PMR spectrum shows 4 absorptions. Which of the following compounds is the unknown compound?

N) Which of the following compounds is the best Brønsted base?

Con. 2961-KK-2693-12.

4

O) Which of the following reaction sequences would be the <u>best</u> synthesis of 2-pentanone.

$$CH_{3}-C-CH_{2}-CH_{2}-CH_{3}$$
(a)
$$CH_{3}-CH_{2}-CH_{2}-CH_{3}$$

$$CH_{3}-CH_{2}-CH_{2}-CH_{2}-CH_{3}$$

$$CH_{3}-CH_{2}-CH_{2}-CH_{3}$$

(b)
$$CH_2-CH_2 CH_3MgI H_3O^{\oplus}$$
 CH_3-CH-O Et_2O

(c)
$$CH_3-CH_2-CH_2-C\equiv N \xrightarrow{CH_3MgI} \xrightarrow{H_3O} \xrightarrow{H_3O}$$

$$\begin{array}{c} \text{CH}_3\text{-}\text{CH}_2\text{-}\text{CH}_2\text{-}\text{C}\text{-}\text{H} \xrightarrow{\text{CH}_3\text{MgI}} \xrightarrow{\text{H}_3\text{O}} \xrightarrow{\text{H}_3\text{O}} \xrightarrow{\text{KMnO}_4} \\ & \xrightarrow{\text{Et}_2\text{O}} \xrightarrow{\text{Et}_2\text{O}} \xrightarrow{\text{H}_3\text{O}} \xrightarrow{\text{H}_3\text{O}} \end{array}$$

- P) For preparation of sample solution in IR spectroscopy, can not be used as a solvent.
 - a) water b) methanol c) hexane d) chloroform.
- Q) In analytical instruments, the role of transducer is a)to convert information in non-electrical domains to information in electrical domains
 - b) to identify, record the change in one of the variables in its environment
 - c) to disperse light into its characteristic wavelength
 - d) to absorb UV radiations.
- R) Organic substances X and Y have retention times, 15.30 and 16.45 minutes respectively on a 30 cm long column. An unretained species passes through in 1.10 minutes. The peak widths for A and B are 1.08 and 1.17 minutes respectively. The average number of plates will be
 - a) 3211 b) 3163 c) 3101 d) 3187.
- S) The nuclei that do not exhibit NMR signal are the a) nuclei containing even number of protons and odd number of neutrons.

- b) nuclei containing odd number of protons and even number of neutrons
- c) nuclei containing even number of protons and even number of neutrons
- d) nuclei containing odd number of protons and odd number of neutrons
- A silver-silver chloride electrode belongs to electrode of T a) first kind ii) second kind iii) third kind iv) none of the above.
- Q.2 Attempt any three of the following sub questions:
 - A) a) Draw a phase diagram for water system.

- 5
- b) Write the Debye-Huckel Onsager equation and explain the terms involved in it.
- 5

2

- B) a) Although the Cu²⁺/Cu⁺ and ½I₂/I standard potentials are +0.15V and + 0.54V respectively, Cu (II) salts liberate iodine from potassium iodide solution. Explain this observation.
 - 4
 - b) Ethylene is a molecule of D_{2h} symmetry. List all the symmetry operations of ethylene.
- 4

c) Briefly explain the trans-effect.

- C) a) Give the 'retro Diels-Alder' fragmentation of the following compounds

 - b) Devise SN² reactions for the synthesis of following product.
- 3

c) Predict the product and name the reaction:

- 2) Ph-CH₂COOC₂H₅ + PhCOOC₂H₅
- D) a) What are the different methods of calibrating the instrumental methods? Describe any one of them.
 - b) What is an arc source? What are its applications?

3

3

- c) With the help of labeled diagram, describe the 'Time of Flight' mass analyzer.
- E) a) The activation energy of a reaction is 80.9 KJmol⁻¹.

 Calculate the fraction of molecules at 400°C which have enough energy to form molecules.
 - b) Calculate the valence electron count in

 (i) [Ni(Cp)₂] (ii) [U(C₈H₈)₂]
 - c) Calculate the λmax for the following compound 2

d) 100 cm³ of an aqueous solution containing 200 mg of solute when extracted once with 10 cm³ of an organic solvent, 120 mg of solute was extracted in organic solvent. Calculate minimum number of extractions required for 99% extraction of solute, by using same volume of organic solvent for each extraction.

Q.3. Attempt <u>any two</u> of the following sub questions:

- A) a) What is Joule-Thomson effect?

 Discuss the experimental techniques used by them to derive its mathematical expression.
 - b) Discuss the solution of Schrodinger wave equation for a particle in a three dimensional cubic box with edges of length 'a', assuming that the potential is zero within the box and infinite outside the box.
- B) a) Describe in brief, the various methods of preparation of alloys.
 - b) Discuss the 16-electron rule.
 - c) Comment on the variable oxidation states of transition metals.
- C) a) Deduce the structure of a compound based on the following data:

Molecular formula : $C_7H_{12}O_3$

I.R. (cm⁻¹): 1740, 1715, 1160 1030.

M.S.(m/z): 144(M+), 129,99,74.55,43(base peak).

P.M.R.(δ): 1.22(3H, t J = 7Hz), 2.10 (3H, s), 2.6(2H,t J= 6.5Hz), 2.72 (2H, t, J=6.5 Hz), 4.1 (2H, q, J = 7Hz).

b) Predict the products of the following reactions:

ii)
$$\frac{\text{CH}_3}{\text{H}^*} = \frac{\text{KMnO}_4}{\text{H}^*} = \frac{\text{i) CH}_3\text{OH} / \text{H}^*}{\text{ii) NH}_5, \ \triangle} = 8$$

iii)
$$CH_3COONO_2$$
 A Pyridine E

8

7

c) Assign the configurational descriptors to the following compounds:

- a) Describe briefly the principles of the following voltammetric techniques:i) d.c.polarography ii) differential pulse polarography
 - iii) cyclic voltammetry iv) stripping voltammetry.
 - b) On the basis of van Deemter equation, explain longitudinal diffusion. Describe the working of the gas chromatographic detector, selectively used for the determination of pesticide containing phosphorous.

....XXX-----